Telomere Shortening, Regenerative Capacity, and Cardiovascular Outcomes.
نویسندگان
چکیده
RATIONALE Leukocyte telomere length (LTL) is a biological marker of aging, and shorter LTL is associated with adverse cardiovascular outcomes. Reduced regenerative capacity has been proposed as a mechanism. Bone marrow-derived circulating progenitor cells are involved in tissue repair and regeneration. OBJECTIVE Main objective of this study was to examine the relationship between LTL and progenitor cells and their impact on adverse cardiovascular outcomes. METHODS AND RESULTS We measured LTL by quantitative polymerase chain reaction in 566 outpatients (age: 63±9 years; 76% men) with coronary artery disease. Circulating progenitor cells were enumerated by flow cytometry. After adjustment for age, sex, race, body mass index, smoking status, and previous myocardial infarction, a shorter LTL was associated with a lower CD34+ cell count: for each 10% shorter LTL, CD34+ levels were 5.2% lower (P<0.001). After adjustment for the aforementioned factors, both short LTL (<Q1) and low CD34+ levels (<Q1) predicted adverse cardiovascular outcomes (death, myocardial infarction, coronary revascularization, or cerebrovascular events) independently of each other, with a hazard ratio of 1.8 and 95% confidence interval of 1.1 to 2.0, and a hazard ratio of 2.1 and 95% confidence interval of 1.3 to 3.0, respectively, comparing Q1 to Q2-4. Patients who had both short LTL (<Q1) and low CD34+ cell count (<Q1) had the greatest risk of adverse outcomes (hazard ratio =3.5; 95% confidence interval, 1.7-7.1). CONCLUSIONS Although shorter LTL is associated with decreased regenerative capacity, both LTL and circulating progenitor cell levels are independent and additive predictors of adverse cardiovascular outcomes in coronary artery disease patients. Our results suggest that both biological aging and reduced regenerative capacity contribute to cardiovascular events, independent of conventional risk factors.
منابع مشابه
Telomere shortening reduces regenerative capacity after acute kidney injury.
Telomeres of most somatic cells progressively shorten, compromising the regenerative capacity of human tissues during aging and chronic diseases and after acute injury. Whether telomere shortening reduces renal regeneration after acute injury is unknown. Here, renal ischemia-reperfusion injury led to greater impairment of renal function and increased acute and chronic histopathologic damage in ...
متن کاملTelomeres and Telomerase in Cardiovascular Diseases
Telomeres are tandem repeat DNA sequences present at the ends of each eukaryotic chromosome to stabilize the genome structure integrity. Telomere lengths progressively shorten with each cell division. Inflammation and oxidative stress, which are implicated as major mechanisms underlying cardiovascular diseases, increase the rate of telomere shortening and lead to cellular senescence. In clinica...
متن کاملHuman Adipose-Derived Stem Cells Exhibit Enhanced Proliferative Capacity and Retain Multipotency Longer than Donor-Matched Bone Marrow Mesenchymal Stem Cells during Expansion In Vitro
Bone marrow-derived mesenchymal stem cells (MSCs) and adipose-derived multipotent/mesenchymal stem cells (ASCs) have been proposed as the ideal cell types for a range of musculoskeletal tissue engineering and regenerative medicine therapies. However, extensive in vitro expansion is required to generate sufficient cells for clinical application and previous studies have demonstrated differences ...
متن کاملThe germline/soma dichotomy: implications for aging and degenerative disease.
Human somatic cells are mortal due in large part to telomere shortening associated with cell division. Limited proliferative capacity may, in turn, limit response to injury and may play an important role in the etiology of age-related pathology. Pluripotent stem cells cultured in vitro appear to maintain long telomere length through relatively high levels of telomerase activity. We propose that...
متن کاملTelomere Shortening Impairs Regeneration of the Olfactory Epithelium in Response to Injury but Not Under Homeostatic Conditions
Atrophy of the olfactory epithelium (OE) associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 120 7 شماره
صفحات -
تاریخ انتشار 2017